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To evaluate the constraints (1)-(3), we need an expression 

for the force 𝐹𝑚 𝑧 of a permanent magnet on a ferro-

magnetic (steel/iron) sphere, where 𝑧 is distance from the 

center of the magnet along its symmetry axis (Fig. 3).

In general, force is the gradient of potential, so Ԧ𝐹 = −∇𝑈
or 𝐹 = −𝑑𝑈/𝑑𝑧 in this case. The ball acts like a compass 

needle (a magnetic dipole) with a moment Ԧ𝑝 in the external 

field 𝐵 of the magnet. The potential energy is 𝑈 = − Ԧ𝑝 ∙ 𝐵. 

The dipole moment of a solid sphere in a field that is close 

to uniform (i.e., on scales comparable to radius 𝑟) is [4]

Ԧ𝑝 =
𝜇 − 1

𝜇 + 2
𝑟3𝐵 ≈ 𝑟3𝐵 (4)

for strongly ferromagnetic materials like iron, with 𝜇 ≫ 1. 

Hence potential 𝑈 = −𝑟3𝐵 ∙ 𝐵 = −𝑟3𝐵2. The fact that 𝐵 is 

squared is important; it arises because both the external field 

and induced dipole contribute to the interaction energy. At 

distances greater than the magnet size, the field is that of a 

dipole so 𝐵 𝑧 ∝ 𝑧−3 along the axis. Hence we expect:

𝐹𝑚 𝑧 = 𝑘𝑧−𝑝 (5)

with 𝑘 = const and 𝑝 =7. This is much steeper than the 

Newtonian force between masses or the Coulomb force 

between charges. It imposes severe limitations on our 

design. If the magnet attracts the ball with a force of 0.01 

mN at a distance of 10 cm, for example, then 𝑘 = 10−12 in 

SI units so the force at 1 cm will be 100 N. It is difficult to 

imagine changing the setup in such a way as to weaken this 

force at the top, while still keeping it strong enough to attract 

the ball up the ramp at the bottom.

Introduction

Proponents of perpetual motion have long been captivated 

by magnets, presumably because magnetic attraction seems 

to offer an infinite source of invisible and hence apparently 

“free” work. A simple example was proposed by medieval 

physician Pierre de Maricourt in 1269. Maricourt’s book was 

plagiarized by the Jesuit scholar Jean Taisner in 1572 [1] and 

the idea was popularized by English bishop John Wilkins in 

1691 (Fig. 1), so it is sometimes known as the “Taisnerius

engine” or “Wilkins ramp” [2]. A permanent magnet pulls an 

iron ball up a ramp. At the top of the ramp, it falls through a 

hole to the bottom of the ramp and repeats the loop, ad 

infinitum. Of course, due to friction and demagnetization, 

this motion could never continue perpetually (Second Law 

of Thermodynamics). But could it even make one or more 

complete circuits? A youtube clip purports to show a real-

life Taisnerius engine making many successful round trips 

[3]. Is it a hoax, or digital animation? We decided to 

investigate the question.

Theory
The situation is depicted in Fig. 3. One can think of at least 

two dynamical (force) requirements: (1) At the top, gravity 

must be stronger than the upward component of magnetic 

force, and (2) at the bottom, magnetic force must be stronger 

than the component of gravity along the ramp. In addition, 

one could apply an energy requirement: (3) the gain in gravi-

tational potential energy 𝑚𝑔ℎ as the ball climbs the ramp 

must exceed its drop in magnetic potential energy ∆𝑈𝑚 as it 

approaches the magnet. Mathematically, we could write:

𝑚𝑔 > 𝐹𝑚 𝑑 sin 𝜃 (1)

𝐹𝑚 𝑛𝑑 > 𝑚𝑔 sin 𝜃 (2)

and 𝑚𝑔ℎ > ∆𝑈𝑚, or (using ∆𝑈 = −𝑊 = ׬− Ԧ𝐹 ∙ 𝑑ℓ):

𝑛 − 1 𝑚𝑔𝑑 sin 𝜃 > 𝑛𝑑׬−
𝑑
𝐹𝑚 𝑧 𝑑𝑧 (3)

Experiment
Because this force law is so critical, we tested it experi-

mentally using a neodymium disk magnet, three ferro-

magnetic steel balls of radii 3.2 mm, 4.8 mm and 6.4 mm, 

and a smooth plexiglass ramp with a slight groove. First, we 

used a smartphone to make high-speed videorecordings of 

the ball being pulled towards the magnet at 240 frames per 

second (Fig. 4). We then used the free software package 

Tracker to manually rotoscope position vs. time data on a 

computer (Fig. 5). Finally, we used Excel to derive speed 

and acceleration from these position data via 𝑣 = ∆𝑧/∆𝑡 and 

𝑎 = ∆𝑣/∆𝑡, and calculated 𝐹 = 𝑚𝑎 with 𝑚 the mass of the 

ball. We could then plot 𝐹 as a function of 𝑧 and fit the data 

to Eq. (5) to determine the best-fit values of 𝑘 and 𝑝.

Results are shown in Fig. 6, which confirms our theor-

etical expectations: 𝑝 = 7.0 and 𝑘 = 3 × 10−12 Nm7. Two 

caveats apply: first, these values depend somewhat on the 

range of data considered. We rejected data beyond a “cutoff 

distance” of 7.7 cm from the magnet. Adjusting this cutoff 

(within the range 7.4 − 8.1 cm) produces a broader range of 

best-fit values, 𝑝 = 7.7 ± 0.8. Smaller cutoffs do not leave 

us with enough data, while longer ones take us into the non-

magnetic regime where the signal is dominated by noise.

Second, our use of 𝐹 = 𝑚𝑎 ignores the effects of friction 

and rolling. If the ball rolls without slipping, then a given 

acceleration 𝑎 implies a larger force 𝐹𝑚, because the magnet 

must not only pull the magnet but also overcome static 

friction 𝑓𝑠 = 𝜇𝑠𝑚𝑔 with 𝜇𝑠 =0.4-0.5 for steel on plexiglass 

and 𝑔 = 9.8 m/s2. Newton’s Second Law then gives 𝐹𝑚 =
𝑚 𝑎 + 𝜇𝑠𝑔 ≈ 𝜇𝑠𝑚𝑔 since 𝜇𝑠𝑔 ≫ 𝑎 over most of the range. 

Our data are inconsistent with this and show strong depend-

ence on distance, implying that the effects of friction and 

rolling are relatively unimportant.

Conclusions
Putting our force law (5) into Eqs. (1) and (2), we obtain the 

force constraints:

𝑚𝑔 > 𝑘𝑑−𝑝 sin 𝜃 (6)
𝑘 𝑛𝑑 −𝑝 > 𝑚𝑔 sin 𝜃 (7)

Combining these two results and eliminating the ratio of 

forces 𝑘𝑑−𝑝/𝑚𝑔, we obtain a constraint on the ramp length 

𝑛 in terms of inclination 𝜃 only:

𝑛𝑝sin2𝜃 < 1 (8)

With 𝑝 = 7, this bound places an extremely tight constraint 

on the ramp (Fig. 7): for any realistic inclination (> 10 deg) 

the bottom can be no farther than 1.6 times farther from the 

magnet than the top! It is hard to see how such a ramp could 

work in practice. The reason boils down to the high value of 

𝑝, which restricts the range of distances over which the 

strength of magnetic and gravitational forces can change 

appreciably relative to each other.

Putting Eq. (5) into Eq. (3) and integrating gives a third 

constraint based on energy. With 𝑝 = 7, this imposes a lower 

limit on inclination:

sin 𝜃 >
𝑛 𝑛6 − 1 𝑘 𝑛𝑑 −7

6 𝑛 − 1 𝑚𝑔
(9)

At the point of closest approach to the magnet, there must be 

enough potential energy left to convert into kinetic energy 

and return the ball to its starting point.

Combining Eq. (9) with Eq. (7) and simplifying, we 

obtain a constraint on ramp length alone:

6 𝑛 − 1 > 𝑛 𝑛6 − 1 (10)

Eq. (10) has no positive real solutions (other than the trivial 

one, 𝑛 = 1, which means a ramp of zero length). This 

suggests that it is impossible to satisfy both the force and 

energy constraints, even for a single circuit.
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Fig. 2: 
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supposed 
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undergoing 

many 

complete 

loops on 

the internet 

[2]

Fig. 1: Maricourt’s

magnetic perpetuum 

mobile of 1269 [1], as 

illustrated in a book by 

Bishop John Wilkins in 

1691 [2]

Fig. 3: Geometry. At top, gravity (blue) needs to be 

stronger than the upward component of magnetic 

force (red). But at bottom, magnetic force (red) needs 

to be stronger than the component of gravity 

downward along the ramp (blue).

Fig. 4: using 

a smartphone 

to record the 

motion of the 

ball in slow 

motion so 

that its 

position, 

speed and 

acceleration 

can be 

determined 

with a 

Tracker app

Fig. 5: the 

rotoscoping 

process. Tracker 

measures position 

as a function of 

time, from which 

we derive speed 

and acceleration

Fig. 6: Experimental best-fit values of 𝑘 and 𝑝 in Eq. (5) 

Fig. 7: upper limits on 

dimensionless ramp length 𝑛
(the ratio of the distances of 

the magnet from the bottom 

to the top) as a function of 

inclination angle


