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Magnet manipulator

Using these two equations for the corresponding fields of the 

magnets we were able to create contour plots to help visualize 

the fields. 

The green highlighted entries in Table 1 show that the 

largest accelerations are predicted to for magnets with 2𝑅 =
ℎ = 1/8“. We plan to check this. Predicted accelerations are 

still about twice those we actually measured. To improve the 

agreement between theory and observation still further, we will 

need to take into account that the component of 𝐵 perpendicular 

to the current is less than 𝐵(𝑧) as given in Eq. (7). This chal-

lenge presents an opportunity for students to connect with 

upper-level electromagnetism. J.D. Jackson’s “Classical 

Electrodynamics let us  see how our next goal should be suing 

the functions 𝐵𝑟 and 𝐵𝜃 to find the component of the field that 

is normal to the axis. This new normal would replace 𝐵 𝑧 in 

our equation for the total force propelling the railguns, 𝐹𝑚. This 

moves us to a new place where we can see if we can improve 

the agreement between theory and observation. 
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To this point, we have applied the Lorentz force law 𝐹𝑚 =
𝐼𝐿𝐵 with a single mean value of B at all locations. In reality, the

magnitude of the field is a function of position (𝑧, 𝑟), where 𝑧 is the 

distance along the magnet’s axis and 𝑟 is the radial distance from 

this axis. Knowledge of 𝐵(𝑧) would us to apply Newton’s second 

law to a small current element 𝐼𝑑𝑧 at 𝑧 (Fig. 3), and then integrate 

to find a more realistic value for acceleration. Taking the magnets 

at both ends into account, Eq. (1) becomes

𝑑𝐹𝑚 = 𝑛𝐼 𝐵 𝑧 + 𝐵 𝐿 − 𝑧 𝑑𝑧 . (6)

We obtained an expression for 𝐵(𝑧) from kjmagnetics.com:

𝐵 𝑧 =
𝐵𝑟
2
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, (7)

where 𝐵𝑟 is the residual field strength, a constant. Because this 

website tabulates the values of distance 𝑧5 at which 𝐵(𝑧) = 5 G, 

we were able to extract values of 𝐵𝑟 for a wide range of values of 

magnet radius 𝑅 and thickness ℎ via 

𝐵𝑟 =
10𝐺
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2
−
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2

. (8)

It turns out that 𝐵𝑟 = 1.50 ± 0.12 𝑇 for all cylindrical neodymium 

magnets with Τ1 16 " ≤ ℎ ≤ ½“ and Τ1 8 " ≤ 𝑅 ≤ ½“.
Integrating Eq. (7) from z =0 to z =L gives us the total 

force propelling the railgun as

𝐹𝑚 = 𝑛𝐼𝐵𝑟[𝑅 − 𝑅2 + ℎ2 − 𝑅2 + 𝐿2 + 𝑅2 + 𝐿 + ℎ 2 . (9)

After reaching this point we saw that the full magnetic field in 
cylindrical coordinates is 𝐵 𝑟, 𝑧 = ෝ𝑟 𝐵𝑟 𝑟, 𝑧 + Ƹ𝑧 𝐵𝑧 𝑟, 𝑧 . We 
saw that what we really want is not 𝐵(𝑟, 𝑧) but 𝐵𝑟(𝑟, 𝑧) and 
𝐵𝑧 𝑟, 𝑧 . Here we write these fields as 

𝐵𝑟 ≃
𝐼𝜋𝑎2

𝑐
cos 𝜃

2𝑎2+2𝑟2+𝑎𝑟𝑠𝑖𝑛 𝜃

(𝑎2+𝑟2+2𝑎𝑟𝑠𝑖𝑛 𝜃 )5/2
(10) and

𝐵𝜃 ≃ −
𝐼𝜋𝑎2

𝑐
sin 𝜃

(2𝑎2−𝑟2+𝑎𝑟𝑠𝑖𝑛 𝜃 )

(𝑎2+𝑟2+2𝑎𝑟𝑠𝑖𝑛 𝜃 )5/2
(11)

In Physics II (electromagnetism), students often struggle 

because the most important elements of the subject are more 

abstract than the forces and bodies in Physics I. To address this, 

we devised a lab activity in which students experiment and 

build their own “rolling railgun”, then attempt to explain its 

behavior both qualitatively and quantitatively. Railguns are 

mentioned in some textbooks but have not received much 

attention in the physics education community [1-5]. We 

designed our activity to be “pandemic-friendly”: all required 

components can be mailed to students at home. 

Students begin by laying aluminum strips on a level, 

insulating work surface about 2 cm apart, and smooth them 

down as flat as possible (Fig. 1). They connect the strips to the 

battery with a switch to turn the voltage between the rails on 

and off, and an ammeter to monitor the current. To form the 

projectile, students center the magnets on both ends of the wire 

axle, ensuring that like poles face each other. They then place 

the projectile in the middle of the rails and close the switch. It 

should accelerate one way or the other. Their task is to explain 

this acceleration using their knowledge of the Lorentz force law 

and the left-hand rule. The goal is for them to find their way to 

something like the diagrams in Fig. 2.

The quantitative aspect of this experiment is for students 

to measure their railgun’s acceleration and hence obtain a value 

for the field strength 𝐵 of the magnets which can be compared 

to the manufacturer’s factory specifications. Taking 𝐵 to be 

approximately perpendicular to the current in the axle, 

Newton’s second law with the Lorentz force Ԧ𝐹𝑚 = 𝐼𝐿 × 𝐵 gives

𝐹𝑚 = 2𝑛𝐼𝐿𝐵 = 𝑀𝑝𝑎 , (1)

for 𝑛 pairs of magnets, where I is current, L is axle length, 𝑚
and 𝑀 are the masses of the axle and magnet respectively, and 

𝑀𝑝 = 𝑚 + 2𝑛𝑀. Using the kinematic formula of 𝑑 = 𝑑0 +

𝑣0𝑡 +
1

2
𝑎𝑡2 and re-arranging gives

𝐵 =
𝑀𝑝𝑑

𝑛𝐼𝐿𝑡2
. 2

Careful students will notice that the Lorentz forces on opposite 

sides of the axle point in opposite directions. The projectile is 

accelerated along the rails by torque, not force (Fig. 2).

Fig. 1: A diagram 

(top) and photo-

graph of a student 

setup (bottom) 

showing required 

components. The 

projectile (two 

neodymium coin 

magnet wheels 

connected by a 

ferromagnetic 

conducting axle) is 

circled in green. 

With this insight, students can replace Eq. (1) with the 

angular form of Newton’s second law:

𝜏 = 𝑟 × 𝐹𝑚 = 𝑟𝐹𝑚 = 𝐼𝑚𝛼 =
𝐼𝑚𝑎

𝑅
. 3

where 𝐼𝑚 is moment of inertia, 𝛼 is angular acceleration, and 𝑟
and 𝑅 are the radii of the axle and magnets respectively. Since 

these are solid cylinders, their combined moment of inertia is 

𝐼𝑚 =
1

2
𝑀𝑅2 + 2𝑛 ×

1

2
𝑚𝑟2. Putting these equations together, 

students obtain a modified version of Eq. (2):

𝐵 =
𝑀eff𝑑

𝑛𝐼𝐿𝑡2
, (4)

where 𝑀eff = (𝑟/2𝑅)𝑚 + (𝑅/2𝑟)2𝑛𝑀 is the effective “rota-

tional mass.” With 𝑛 = 2, 𝑑 = 38 ± 1 cm, 𝐿 = 6.3 ± 0.1 cm, 

𝑚 = 3.0 ± 0.2 g, 𝑟 = 1.4 ± 0.1 mm, 𝑀 = 0.38 ± 0.05 g and 

𝑅 = 3.2 ± 0.1 mm, we measured 𝐼 = 0.58 ± 0.19 A and 𝑡 =
1.4 ± 0.2 s, implying field strengths 𝐵 = 120 ± 50 G from Eq. 

(2) and 70 ± 20 G from Eq. (4). These values are several times 

smaller than the advertised strengths of the magnets, averaged 

over the length of the axle (of order 280 G), likely because 

railgun acceleration is sensitive only to the component of 𝐵
perpendicular to the current in the axle.

Students can use their calculus skills to maximize the 

speed of their railguns by varying the values of 𝑛, 𝑟 and 𝐿. 

Using 𝑚 = 𝜌𝜋𝑟2 where 𝜌 is axle density, Eq. (4) becomes

𝑎 =
2𝑛𝐼𝐿𝐵𝑅𝑟

𝑛𝑀𝑅2 +
𝜋
2
𝜌𝐿𝑟4

. (5)

Differentiating with respect to 𝑛 and 𝐿, we obtain derivatives 

that vanish as 𝑛 → ∞ and 𝐿 → ∞, giving theoretical upper 

limits of 𝑎 ≤
2𝐼𝐿𝐵𝑟

𝑀𝑅
= 0.6 m/s2 and 𝑎 ≤

4𝑛𝐼𝐵𝑅

𝜋𝜌𝑟3
= 2.8 m/s2 res-

pectively. Optimizing for axle radius is more interesting; we 

find an optimal radius 𝑟∗ =
2𝑛𝑀𝑅2

3𝜋𝜌𝐿

1

4
= 1.3 mm, for which 

predicted acceleration 𝑎∗ =
3𝐼𝐿𝐵𝑟∗

2𝑀𝑅
= 0.4 m/s2, consistent with 

our measured results.

Table 1: Predicted railgun accelerations for various values of magnet thickness ℎ
and radius 𝑅 (upper values in each cell) and experimentally measured values, 

where available (lower values).
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Fig.2: (top) Three-quarter view (left) and edge-on view (right) of the situation.

Fig.3: Side view of the projectile showing the Lorentz force 𝑑𝐹𝑚 on the current 

element Idz

Fig. 7 Contour plot for 

the equation 𝐵𝑟. Shows 

current moving around a 

circular loop. The 

produced magnetic field 

is shown through the 

lines of force in the plot. 

Plotting 𝐵𝑟 as a function 

of Cartesian coordinates, 

ℎ and 𝑧.
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Fig. 8 Contour plot for 

the equation 𝐵𝜃. Shows 

current moving around 

a circular loop. The 

produced magnetic field 

is shown through the 

lines of force in the plot. 

Plotting 𝐵𝜃 as a 

function of Cartesian 

coordinates ℎ and 𝑧.


