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Magnet manipulator

For smooth exotic topology to mimic the effects of lensing 

by a mass 𝑀 in standard GR, Eqs. (4) and (5) imply that the 

“topological parameter” 𝑎 must be given by

𝑎 = 2 1 +
4𝐺𝑀

𝜋𝑐2𝑟0
. (6)

In the context of light deflection in the solar system, this 

identification would appear rather fine-tuned, since the 

second term in parentheses in Eq. (6) is only ~3 × 10−6. 

But for cosmological lensing, as seen in the angular 

size of fluctuations in the cosmic microwave background, 

the situation is different. Here, as a rough guess, we take 

𝑟0~𝑐𝑡0 where 𝑡0 is the age of the universe, 𝑀 = 𝜌crit𝑉
where 𝜌crit = 3𝐻0

2/8𝜋𝐺, the Hubble expansion rate 𝐻0 =
1/𝑡0, and 𝑉~4

3
𝜋𝑟0

3. Combining these expressions, we find 

that the second term in the parentheses in Eq. (6) is now 

2/𝜋; i.e., of order unity. The implication is that exotic 

smoothness might indeed explain gravitational lensing on 

cosmological scales in a natural way.

Discussion
The assumption that 𝑎 𝑡 = constant in the metric (1) is a 

severe limitation that should be lifted in further work. None-

theless, we have here obtained the first approximate empiri-

cal constraint on smooth exotic topology as an alternative to 

dark matter.
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Dark Matter―New Cosmological Epicycle?
Dark matter is hypothesized to make up 25% of the 

energy content of the Universe [1]. It cannot consist of any-

thing within the existing Standard Model of particle physics, 

and has not been directly detected in any experiment. The 

evidence for dark matter is circumstantial: it seems to be 

needed in order to explain the behavior of visible matter, 

from the rotational velocities of stars in spiral galaxies to the 

growth and distribution of large-scale structures like clusters 

of galaxies in the early universe. Perhaps the strongest 

evidence for dark matter comes from gravitational lensing 

(Fig. 1), which allows us to reconstruct the location of 

gravitating mass even where none is seen.

But the fact that we need to invoke an unseen entity to 

reconcile modern cosmology with observation strikes some 

as reminiscent of the epicycles of Ptolemaic astronomy. 

Einstein’s General Relativity (GR) teaches us that “gravity = 

curved spacetime.” Could it be that what we have taken as 

the gravitational effects of new forms of matter-energy is 

really just a manifestation of exotic spacetime structure― 

i.e., topologically more complex than ℝ4?

Exotic Topology
Topology studies properties of space and geometry that 

are preserved under continuous deformations (homeomor-

phisms and diffeomorphisms). Homeomorphisms are invert-

ible transformations that do not involve cutting or gluing. 

Diffeomorphisms are differentiable homeomorphisms, 

where we can perform calculus.

The property of interest here is “exotic smoothness.” 

Exotic manifolds are manifolds that are homeomorphic, but 

not diffeomorphic, to n-dimensional Euclidean space ℝ𝑛.

Exotically smooth manifolds, in other words, are those in

Fig. 2: Artist’s inter-

pretation of exotic four-

dimensional space [2]. 

The center is the Euclid-

ean representation of 

four-space, while the 

tendrils represent its 

exotic nature as it 

approaches infinity.

Fig. 1: One of the strongest pieces of evidence in favor of dark matter is 

the Bullet Cluster, where most of the visible mass is associated with hot, 

x-ray emitting gas (pink), but the vast majority of total mass is located in 

a different location (blue). Critical to this argument is the reconstruction 

of total mass distribution using gravitational lensing.

which we can do calculus (“smooth”), but which do not map 

smoothly to ordinary space (“exotic”). Such a space is 

depicted schematically in Fig. 2.

The first exotic versions of ordinary four-dimensional 

space ℝ4 were discovered by Michael Freedman in 1982 and 

Simon Donaldson in 1983 [3]. Their work was extended by 

Robert Gompf in 1985 and Clifford Taubes in 1987, who 

showed that there are, in fact, an uncountable infinity of 

exotic versions of four-dimensional Euclidean space [4]. 

Most remarkably, these exotic versions of ordinary space 

exist only in the case of four dimensions.

These results may have earthshaking physical signifi-

cance, yet they have hardly been noticed by physicists so far. 

Is it a coincidence that real spacetime is four-dimensional? A 

basic requirement for any practical field theory is that the 

underlying space be differentiable (“smooth”). But need it be 

Euclidean? According to GR, what we feel as the “force of 

gravity” is actually just a manifestation of curved spacetime. 

But if that spacetime is Euclidean, observations imply that it 

is curved by vast amounts of unseen dark matter and energy. 

Could it be, instead, that spacetime is exotic? This idea is 

known as the “Brans conjecture” [5].

Gravitational Lensing Test
The challenge is to extract, from the uncountable infin-

ity of possible exotic ℝ4s, a space whose properties can be 

described by an actual spacetime metric. A major first step in 

this direction has been taken by Chris Duston, who decom-

posed exotic spacetime using topological objects known as 

“Casson handles” and recombined them to obtain a metric 

using a mathematical generalization of the Fourier transform 

known as the Z-transform [6]. He has applied this method to 

obtain two different metrics, one astrophysical (a Kruskal-

like “exotic black hole”) and the other cosmological (“exotic 

Friedmann-Robertson-Walker” or eFRW). Due to the details 

of the Z-transform, the cosmological metric bifurcates into 

two possible cases, one describing 4D spacetime and the 

other 3D space only:

𝑑𝑠2 = ቐ
−𝑑𝑡2 + 𝑎 𝑡 2 1

2
𝑑𝑟2 + 𝑟2𝑑Ω2 0 ≤ 𝑡 < 1

𝑎 𝑡 2 1

2
𝑘𝑛/2𝑑𝑟2 + 𝑟2𝑑Ω2 𝑡 ≥ 1

. (1)

Here 𝑑Ω2 ≡ 𝑑𝜃2 + sin2𝜃𝑑𝜑2 and 𝑎(𝑡) is the usual cosmo-

logical scale factor, but 𝑘 is not the curvature parameter (this 

model is flat). We restrict our attention here to the 4D case 

(0 ≤ 𝑡 < 1) and follow Duston in assuming that ሶ𝑎(𝑡) ≈ 0 for 

the purposes of our lensing calculation.

With this approximation, Eq. (1) takes the static, spherically 

symmetric form studied by Weinberg in his analysis of light 

deflection in standard GR [7]:

𝑑𝑠2 = −𝐵 𝑟 𝑑𝑡2 + 𝐴 𝑟 𝑑𝑟2 + 𝑟2𝑑Ω2 . 2

From the 𝑑𝑡2 term we see that 𝐵(𝑟) = 1; and from the 𝑑𝑟2

and 𝑑Ω2 terms we see that 𝐴 𝑟 = 1

2
if we rescale the radial 

coordinate 𝑟 → 𝑎𝑟. To obtain the lensing angle, we solve the 

geodesic equation. The 𝑡, 𝑟 components of this equation give 

two conserved quantities (energy per kilogram E and angular 

momentum per kilogram J), which we use to solve the 𝜑
equation (the 𝜃 equation is satisfied automatically by 

symmetry). This results in a differential equation for 𝑟(𝜑):

𝐴(𝑟)

𝑟4
𝑑𝑟

𝑑𝜑

2

+
1

𝑟2
−

1

𝐽2𝐵 𝑟
= −

𝐸

𝐽2
, (3)

where 𝐽 = 𝑏𝑉2, 𝐸 = 1 − 𝑉2, and b is the impact parameter of 

a test body approaching the lensing mass from infinitely far 

away at velocity V. Total deflection ∆𝜑 = 2 𝜑 𝑟0 − 𝜑∞ −
𝜋, where 𝑟0 is the distance of closest approach to the lensing 

mass and 𝜑∞ is the value of 𝜑 at infinity (Fig. 3). Solving 

Eq. (3) with 𝑉2 = 1 for photons, we obtain

𝜑 𝑟 − 𝜑∞ = න
𝑟

∞

𝐴1/2(𝑟)
𝑟

𝑟0

2
𝐵(𝑟0)

𝐵(𝑟)
− 1

−1/2
𝑑𝑟

𝑟

In GR with a Schwarzschild metric, 𝐴 𝑟 = 1 +
2𝐺𝑀

𝑐2𝑟
and 

𝐵 𝑟 = 1 −
2𝐺𝑀

𝑐2𝑟

−1
≈ 1 −

2𝐺𝑀

𝑐2𝑟
, and we find that

𝜑 𝑟0 − 𝜑∞ =
𝜋

2
+

2𝐺𝑀

𝑐2𝑟0
so    ∆𝜑 =

4𝐺𝑀

𝑐2𝑟0
.          (4)    

By contrast, with Duston’s expressions for 𝐴 𝑟 and 𝐵 𝑟 as 

above, we find instead

𝜑 𝑟0 − 𝜑∞ =
𝜋𝑎

2 2
so      ∆𝜑 = 𝜋

𝑎

2
− 1 .       (5)

Fig. 4: Using light deflection to probe the global topology of space (taken from [8]). The three figures at left show the three possibilities for standard 

(Euclidean) topology: flat, open and closed. The figure at right is meant to suggest a possible topological alternative (not to scale!) 

Fig. 3: Setup and important quantities for light deflection calculation [7]


