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Black Holes

e Are real!




Nobel Prize




Inside the Horizon

* Black-hole interiors are the only place in nature we
can never observe — by definition!

* The only way to “see” beyond the event horizon is
through mathematics

» Existing visualizations in the realistic case (mass and
spin but no electric charge) use special coordinates
known as Boyer-Lindquist coordinates

* This brings out the singularity (ring) and horizon
structure (spherical inner horizon, ellipsoidal
ergosphere):




Invariants

e Simplicity of the preceding picture is due to
the choice in coordinates

* But coordinate-dependent quantities can be
misleading! Consider Greenland vs. U.S.A. on
different projections

* To be sure of drawing true conclusions, we
need to express results in terms of invariants:
guantities whose value is the same regardless
of coordinates



Objective

 We focus on the curvature of
spacetime inside the black hole
horizon

* Mathematicians have proved that this
curvature is characterized by at most
seventeen invariants for the most
general possible black holes (those
with mass, spin, and charge)

* We use a powerful symbolic
computational tool to calculate and
plot all seventeen of these curvature
invariants for the first time

* The results differ dramatically from
the simple picture above!




General Relativity

* In GR (Einstein, 1916), gravity = shape of spacetime

* Shape of spacetime is described mathematically by
the metric tensor, a generalization of Pythagoras'

theorem
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* All physical quantities are then constructed out of the
metric and its first and second derivatives with respect to
space and time:
Metric tensor: g;; (simplest examples above) (2D matrix, 4% =16 terms)
Christoffel symbol: I = L ¢ (8, g +0r g —B1g#) (3D matrix, 4° = 64 terms)
Riemann tensor: R jj; = 6k I j1 =01 jx +1° i T o —T° 5 T o (4D matrix, 4* = 256 terms)

Fully covariant and contravariant forms: Rjy; = gio R jy and R/¥ = gio g 5 R, (summation convention)

Ricci tensor: R;; = R ; (contraction)



Implementation

 Two main challenges:

* Translating tensor language of general relativity to computational syntax

(easy)
» Simplifying the resulting expressions (hard)



Translation

e Our inspiration is a Mathematica code in James Hartle's Gravity (Addison-Wesley, 2003)

* Given a metric, our code computes the inverse metric, Christoffel symbols, Riemann and Ricci Tensors

Clear(n, coord, r, 0, ¢, t,m, Q, 8, metric, fnversemetric, christoffel, riemann, riemannDown, riced, Listriced, )
Riemann tensor

Colodaed bom ¥l o w8 1y A g o 1* Py -I* 4 1y

scalar, ricciSing, Vistriccising)

Coordinates
nedjcoord « (r, 8,4, t); riemann 1+ riesann » Table|
Dichristoffel [, §, 1]], coord((k]] ) -D{ehristoffel([f, §, k1], coord[(1]] ]+
Metric Sum[christoffelffe, §, 1)) christoffel(i, k, o)) - christoffel[[o, §, k)] christeffel[([i, |, 0]],
v+ (acosto))? N N {0y 1, n}],
mm.{{'—,u,.q,_“'.o. 0,0}, (0, e (aceston)’, 0, 0}, Uy 30y (5 3, 81, (K, 3, 80, (1, 3, 8))
o' (¢~ 2mr) (Sinfo))’ a (07 -2mr) (Stn(o))? Wo wil aiso need the uly covariant form (ol indices down) of the Riemann tensor, R, = £ ¥ u

{l.o. Peal- ($dnfon)?, }.
'+ (aCosio))? r!« (aCoso))?
riesann®own 1« rienansDown » Table [Sum(metric[ (1, o)) riemanaf(o, §, %, Uds (o dyn))y (fy 0, m), Sy 2y 0], (hy 2,0}, (1, 0, m))

(o0 (¢ -2nr) (sin[e))’ [ Q*-2mr ]}}
TN (aces(e))? 4 (aCos(0))? Ricci tensor
Note: w0 reserve « for anguiar momenium, ¢ K the determinant of e metrc, = for mass, « for dimansionalty, ( for charge, « for (Boyer-Lindquist) radkel distance. » 1or Proper Sme and 10 (g b contructing o0 the st and Nrd ndioes of Riemasn, £, « ¥ o
brre. Varabion (L & Lo pow 8nd v may bo used ¢ durmmy indces.

A ricef turfced « TableSum{rfemanafh, 4, &, §10s (s 2 0], (0, 0,80, U3, 1, 0))
Inverse metric

inversemetric « Inverse(metric);
Vistriced to Tablo[If [UnsameQ[ricei[[f, 111, 0], (ToString[R[], L)), ricei[[d, 10D, tdy 2y m), (L, 2, 50)

Christoffel symbols TableForm[Partition|DeleteCases Flatten|Listrices], ML), 2), Tablespacing « (2, 2))
Ontained boes ', « ;f’o,v!l YR T
; Ricci scalar
christoffel 1x christeffel » hilo[ = Sum|inversemetric((i, 1))
3 Wo'¥l also nead the Flco scal, defined by £ « ¢ B,

(O[metric((1, k)), coard[[f]] )+
D(metric((l, j]), coord((k]] ] -D[metric((], k)], coord[[1]] ]}, {1, 1, m)),
(fy 3y n)y {1y 3y m), (K l.l)] (This is also e simplest of he srventeon curvatuss inviriants, known as e Roa imarant

scalar « Sum[inversemetric[[1, 1)) ricci((d, §)), (4, 4, 0), (), 2, 0))



Issue: Pages and pages of results



Simplification

* The more difficult challenge is to simplify the resulting expressions! For example, messy
combinations of sin(#) and cos(26) terms in R;;above --- we would like to express all results in
terms of powers of a single trigonometric function

* To do this we constructed a "trig simplifier":

Trig Simplifier:
$TrigFns = {Sin, Cos, Tan, Csc, Sec, Cot};
(WRules = $TrigFns = (Through[$TrigFns(x]] /. x +2ArcTan[t] // TrigExpand // Together) // Thread) ;

invWRules = #[[1]] - Solve([#, t, Reals]) & /@ WRules;

convert[expr , (trig : Alternatives @@ $TrigFns) [x ]) := Block[(temp, t)}, temp = expr /. x + 2ArcTan([t] // TrigExpand // Factor}
temp = temp /. (trig /. invWRules) // Union // FullSimplify;
Or @@ temp /. trig - HoldForm([trig)(x)] /. ConditionalExpression -+ (21 &) // FullSimplify)



Simplification results

A known result - =



Example: Weyl Invariants

- %000







Physical Implications




Conclusions

* Curvature inside real black holes is (1) both positive and negative, (2) definitely not
constant, and (3) ridiculously complex!

* The interiors of black holes are much more complex and beautiful than we ever
imagined

* The Weyl invariants are especially contorted. Interesting since these describe
curvature associated with gravitational waves

* Spacetime is mostly warped ("gravito-electric" dominated) in regions of positive
curvature, but mostly twisted/dragged ("gravito-magnetic" dominated) in regions of
negative curvature

* This may explain certain puzzles in astrophysics
* More remains to be understood about the physical importance of these invariants

* But before that, it is necessary to find the invariants, and that is what we have done
here!




