BOUNDARY CONDITIONS IN CONWAY'S GAME OF LIFE DESMOND SOROKA TOWSON UNIVERSITY MENTOR: JAMES OVERDUIN

Conway's Game of Life (1970)

- A set of rules governing pixels on a grid
- These rules lead to patterns whose evolution is strikingly reminiscent of real life!
- Has led physicists to speculate that the "laws of nature" are not fundamental, but simply approximations to a deeper set of Conway-like rules on an underlying "spacetime grid"
- Are we living in the matrix?

John Conway Circa 1969

Rules

- 1. Any nonliving cell with 3 neighbors becomes alive next time step (Birth)
- 2. Any living cell with 2-3 live neighbors survives to the next time step (Survival)
- 3. Any living cell with > 3 live neighbors dies next time step (Overpopulation)
- 4. Any living cell with < 2 live neighbors dies next time step (Underpopulation)

Glider Example

Slightly More Complicated Example

Racetrack (Featured Picture, Wikimedia Commons, February 6, 2011)

Small Variances Lead to Large Changes

People Actually Study This?

nature > letters > article	Physica D: Nonlinear Phenomena Volume 118, Issues 1–2, 1 July 1998, Pages 49-52
Letter Published: 14 December 1989 Self-organized criticality in the 'Game of Life"	1f fluctuation in the "Game of Lis Shigeru Ninagawa, Masaaki Yoneda 옷 쯔, Sadaki Hirose
Per Bak, Kan Chen & Michael Creutz	
Nature 342 , 780–782 (1989) Download Citation ↓	

Journal of Statistical Physics

September 1978, Volume 19, Issue 3, pp 293-314 | Cite as

Statistical mechanics of a dynamical system based on Conway's game of Life

Authors

Authors and affiliations

L. S. Schulman, P. E. Seiden

the "Game of Life"

网络德国特兰德岛加多

Implementation

- Java-based program
- Features:
 - Graphical display
 - Population graph
 - Fill fraction
 - Resizable

Population vs Generation

Questions?

- After many generations, population tends to reach a terminal limit
- What factors affect this terminal limit?
 - Grid size
 - Fill fraction
 - Boundary conditions
 - Fractal dimension (measure of roughness)
- How to relate to entropy and the Second Law of Thermodynamics?

Boundary Conditions

How Did We Collect Data?

- Automated data collection
- Collected population data after varying:
 - Grid size
 - Fill fraction
 - Boundary condition
- Averaged data of 30 trials of each configuration
 - Over 31 hours spent collecting data

Link Between Fill Fraction and Population?

Equation For Terminal Population?

Terminal Population

Open Questions

- Population reached a maximum at ~40% fill fraction
- Population appeared symmetrical about maximum
- Why is there so little difference between absorbing and repeating boundary conditions?
- Thought differences between terminal populations of absorbing/repeating and infinite would decrease as grid size increased
 - Effect of BCs = C/A = 4/L

Future Work

- Additional ways to describe state
 - Fractal dimension
 - Number of connected life forms
- Game of Life in higher dimensions
- Definitions of entropy

Thanks to the Maryland Space Grant Consortium for support!

