2019 MDSGC Student Research Symposium

Feasibility Study of the Liquid Propellant Rocket Engine

Intern: Gregory Patton, Capitol Technology University

Co-Participant: Kristen Arey, Morgan State University

Mentor: Dr. Seong Lee, Morgan State University

How to Design A Liquid Propellant Rocket Engine

Purpose: Explore the properties of liquid propellants used in rocket engines and determine design factors for optimal engine performance.

Objectives:

- Analyze and Compare Different Types of Liquid Propellants
- Design the Prototype Rocket Engine with Case Study Data
- Compare NASA CEA Analysis to Theoretical Calculations of Engine Performance

Research & Methodology

NIST

National Institute of Standards and Technology U.S. Department of Commerce

COPENHAGEN SUBORBITALS

- Read Articles, Books, and Databases on Rocket Science, Design, and Relevant Thermochemical Processes
- Perform Calculations to Establish Design Parameters
- Utilize Case Study & Computer Simulations to Validate
 Preliminary Design

Propellant Options

	RP-1	Methane	Ethanol	Hydrogen	Hydrazine	Oxygen	Fluorine	Nitric Acid	Di-nitrogen Tetroxide
Boiling point, K	420	112	351	20	386	90	85	356	294
Melting point, K	222	92	159	14	200	54	53	232	264
Density, g/ml	.820	.423	.790	.071	.793	1.142	1.500	1.510	1.440
Molecular Weight, g/mol	175	16	46	2	60	32	38	63	92
Critical Pressure, MPa	2.17	4.6	6.39	1.35	8.2	5.01	5.58	8.06	7.01
Combustion Enthalpy, KJ/mol	7768	891	1367	286	1975	0	0	N/A	N/A
Handling Properties	Storable	Cryogenic	Storable	Cryogenic	Storable	Cryogenic	Storable	Storable	Storable
Toxicity	Nontoxic	Nontoxic	Nontoxic	Nontoxic	Toxic	Nontoxic	Toxic	Toxic	Toxic

COMBUSTION & HYPERGOLIC REACTIONS

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2 + O_2 \rightarrow 2H_2O_2 + O_2 \rightarrow 2H_2O_2 + 18O_2 \rightarrow 12CO_2 + 12H_2O_2$

2N2H4 + N2O4 → 3N2 + 4H2O

Boiling and Freezing Points

Density

Propellant Tank Approximations D= 4.6in.

Ideal Design Factors of Prototype Rocket

• Efficiency

High Specific Impulse (Isp)

Simplicity

Pressure Fed System

Safety

Minimal Toxic Reactants/ Emissions

Reusability

Non-ablative Cooling System

Summary of Case Study **UCLA Copenhagen Suborbitals** ARES NEXO II Ballute Avionics Ethanol Parachute Liquid Engine oxygen tank ACT A CONTRACT

	NEXO II	ARES
O/F	1.3	Data Not Released
Pc	1.6 MPa	Data Not Released
Thrust	5,000 N	3,114 N
Height/ Diameter	22ft/12"	15.2ft/7"
Apogee	46,000 ft.	14,600 ft.

Prototype Rocket Engine				
Desired Specifications				
O/F	1.3			
Pc	2.28MPa			
Тс	3000K			
Thrust	2800N			
Height/ Diameter	≈ 12ft / 6.9"			
Apogee	13,000 ft.			

Design Calculations of

 $\dot{m} = \frac{F}{V_2}$ $\dot{m} = \frac{2800}{2325.86}$

m = 1.203 *kg/sec*

$$t_b = \frac{m_p}{\dot{m}}$$

$$10 = \frac{m_p}{1.203}$$

$$m_p = 12.03 \, kg$$

$$D_{t} = \sqrt{\frac{4(8.22)}{\pi}} \qquad D_{t} = 3.235 cm$$
$$D_{e} = \sqrt{\frac{4(43.6)}{\pi}} \qquad D_{e} = 7.45 cm$$
$$D_{c} = \sqrt{\frac{4(24.66)}{\pi}} \qquad D_{c} = 5.603 cm$$

CONTROL PRESSURE RATIO

$$\frac{p_2}{p_1}$$
, is $\frac{0.054019}{2.28} = 0.02369$
 $\frac{A_t}{A_e} = \left(\frac{k+1}{2}\right)^{\frac{1}{(k-1)}} \times \left(\frac{p_2}{p_1}\right)^{\frac{1}{k}} \times \sqrt{\frac{k+1}{k-1}} \times \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{(k-1)}{k}}\right]$
 $\frac{A_t}{A_e} = 0.1884733$

Prototype Rocket Engine Design

Performance Analysis (NASA CEA)

0/F=	1.30000	%FUEL=	43.478261	R,EQ.RAT	1.4757
		CHAMBER	THROAT	EXIT	EXIT
Pinf/P		1.0000	1.7231	1.0235	28.689
P, BAR		2.2800	1.3232	2.2277	0.07947
т, к		3189.07	3052.10	3183.07	2391.63
RHO, KG	/CU M	1.6518-1	1.0172-1	1.6180-1	8.3142-3
H, KJ/K	G	-229.26	-958.44	-261.27	-4114.59
U, KJ/K	G	-1689.56	-2259.27	-1638.05	-5070.46
G, KJ/K	G	-45301.3	-44894.7	-45248.6	-37916.1
S, KJ/(KG)(K)	14.1333	14.1333	14.1333	14.1333
M. (1/n		19,210	19,588	19.223	20.803
(di V/di	É)t	-1.05255	-1.84542	-1.85225	-1.01001
(dLV/dL	Tie	2.0050	1.9884	2.0012	1.2511
Cp. K1/	(KG) (K)	10.7011	10,1170	18.6798	4.7976
GAMMAS	(1.1236	1,1211	1.1235	1.1369
SON VEL	M/SEC	1245.4	1207.6	1243.7	1842.4
MACH NU	MBER	0.000	1.000	0.203	2.674
PERFORM	ANCE PARA	METERS			
Ae/At			1,0000	3,0000	5,3000
CSTAR,	M/SEC		1856.1	1856.1	1856.1
CF			0.6506	0.1363	1.5018
Ivac, M	/SEC		2284.8	5693.8	3130.5
Isp, M/	SEC		1207.6	253.1	2787.6
MASS FR	ACTIONS				
*co		0.41818	0.41002	0.41783	0.37166
*C02		0.17365	0.18647	0.17420	0.24675
-H		0.00376	0.00328	0.00374	0.00107
HO2		0.00003	0.00002	0.00003	0.00000
-H20		0.01643	0.01611	0.01641	0.01592
*0		0.01272	0.00966	0.01258	0.00068
*OH		0.05341	0.04499	0.05304	0.00900
*02		0.02842	0.01655	0.02026	0.00141

THERMODYNAMIC PROPERTIES FITTED TO 20000.K

Input:

Pc = 2.28 MPa

Fuel = C2H5OH(L)

Oxidizer = O2(L)

Mix Ratio = 1.3

Ac/At = 3

Ae/At = 5.3

Comparison of Theoretical Calculation & CEA Simulation

The insight provided by the literature and the case study resulted in a series of design calculations that produced a liquid propellant engine system that has the following performance characteristics:

	Theoretical	CEA	%Difference
lsp., s	237.5	253.1	6%
Tc, K	3000	3189	6%
C*, m/sec	1557.45	1856.1	16%
CF	1.49	1.5	0.66%

Trends in Variation of Design:

Conclusion

Ethanol is a great fuel choice

- Storable at room temperature
- Nontoxic
- Practical Tank Size

Literature and Case Study were effective

- Enabled Enlightened Systems Choices
- Calculations produced an ideal engine design
- Design could successfully be modeled in 2D & 3D

Comparison validated Calculations

Theoretical performance matched CEA analysis

References and Acknowledgements

Sutton, G. P., & Biblarz, O. (2016). *Rocket propulsion elements*. John Wiley & Sons.

Krzycki, L. J. (1967). *How to Design, Build and Test Small Liquid-fuel Rocket Engines. b.* Rocketlab.

Huang, D. H., & Huzel, D. K. (1992). *Modern engineering for design of liquid-propellant rocket engines*. American Institute of Aeronautics and Astronautics.

National Institute of Standards of Technology. (2019, July 3). Chemistry WebBook, Standard reference Databook. Retrieved from the National Institute of Standards of Technology website: <u>https://webbook.nist.gov/chemistry/</u>

Randall, S., **S. Lee** (2016), *Biomass Utilization Reducing Greenhouse Gases*, Presented and Published in 2016 MSGC Summer Presentation, August 2016.

Marques, M. P. (2106). *Small Liquid Propellant Rocket Engine* (Master's thesis). Instituto Superior Technic, Lisboa, Portugal.

Braxton, T., **S. Lee** (2015), *Life Cycle and Cost Analysis* of Carbon-based Biomass Fueled Next Generation Hydrocarbon Rocket Engines, Presented and Published in 2015 Summer Research Symposium, July 2015.

MDSGC Staff:

Dr. Matt Collinge, Deputy Director

Mrs. Dillard-Ewing, Staff

Morgan State University CAESECT Lab Staff:

Dr. Seong Lee (Lab Director)

Dr. Xuejun Qian (Lab Manager)

Yulai Yang

Marc Caballes

Oludayo Alamu

Raghul Chandrasekaran

Blaise Kalmia

Thanks and Q&A

