
EXOTIC SPACETIME TOPOLOGY

As an Alternative to Dark Matter and Energy

Greg Kuri1, James Overduin1 and Richard Conn Henry2

1Towson University, Towson, Maryland

Magnet manipulator

Discussion
Many challenges remain in translating the ideas ex-

plored here into a practical alternative to dark matter or dark 

energy. Our next step will be to examine the implications of 

the metric (1) and compare them with actual data on gravita-

tional lensing. Next, if successful, we will consider whether 

a model like this might be helpful in resolving some of the 

problems with the dark-matter hypothesis, such as density 

cusps and missing satellites [7].

Exotic manifolds may someday also find physical 

application to such fields as quantum mechanics and particle 

physics. Jerzy Król has suggested that the exoticness of ℝ4

may provide a mathematical basis for decoherence, the mys-

terious process by which quantum processes on microscopic 

scales become classical on macroscopic ones [8]. Asselmey-

er-Maluga, Król and Brans have argued that exotic smooth-

ness might explain dark energy and inflation, and even pro-

vide a purely gravitational model for fermions [9].
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Case Study: Gravitational Lensing from 

Exotic Smooth Structure

Exotic Spacetime Topology

Dark Matter and Energy ― the New Epi-

cycles of Cosmology?
Dark matter and energy are two forms of matter-energy 

that are hypothesized to make up 95% of the energy content 

of the Universe [1]. Dark matter is gravitationally attractive 

(like ordinary matter) while dark energy is gravitationally 

repulsive and acts only on cosmological scales. Neither can 

consist of anything within the existing Standard Model of 

particle physics, and neither has been directly detected in 

any experiment.

The evidence for dark matter appears on many scales: 

individual galaxies (rotation curves), galaxy clusters (galaxy 

peculiar velocities, X-ray emission from hot intracluster gas, 

and lensing as in Fig. 1 above), and cosmology (large-scale 

structure formation). In each case the behavior of visible

matter seems to require the existence of a large amount of 

additional matter that is invisible.

The evidence for dark energy is likewise indirect: its 

gravitationally repulsive character stretches space in a way 

that can explain the observed relationship between super-

nova magnitude and redshift. Also its energy density, when 

added to that of matter (both ordinary and dark) explains 

why the total energy density of the Universe is exactly equal 

to the critical density, as implied by observations of aniso-

tropies in the cosmic microwave background.

But the fact that two invisible entities are needed to 

reconcile modern cosmology with observation strikes some 

as reminiscent of the epicycles of Ptolemaic astronomy. 

Einstein’s General Relativity teaches us that “gravity = 

curved spacetime.” Could it be that what we have taken as 

the gravitational effects of new forms of matter-energy is 

really just a manifestation of exotic spacetime structure ---

i.e., topologically more complex than ℝ4?

Fig. 2: An artist’s interpretation of exotic

four-dimensional space [2]. The center is 

the Euclidean representation of four-

space, while the tendrils represent its 

exotic nature as it approaches infinity.

Topology studies 

the properties of space 

and geometry that are 

preserved under contin-

uous deformations (eg. 

stretching or crumpling). 

Two such deformations 

are homeomorphisms and 

diffeomorphisms. Home-

omorphisms are inverti-

ble transformations that 

do not involve cutting or 

gluing. Diffeomorphisms 

are differentiable homeo-

morphisms, where we 

can perform calculus. 
Fig. 1: Dark matter is hypo-

thesized to explain the bend-

ing of light rays from distant 

galaxies (above), as seen in 

galaxy cluser MS2137 (left). 

The property of interest here is “exotic smoothness.” 

Manifolds are topological spaces in which each point’s sur-

rounding points, called a neighborhood, locally resemble a 

piece of Euclidean space. Exotic manifolds are manifolds that 

are homeomorphic, but not diffeomorphic, to n-dimensional 

Euclidean space ℝ𝑛. Exotically smooth manifolds, in other 

words, are those in which we can do calculus (“smooth”), but 

which do not map smoothly to ordinary space (“exotic”). 

Such a space is depicted schematically in Fig. 2.

The first exotic space discovered was actually a seven-

dimensional sphere. Discovered in 1956 by John Milnor, this 

object behaved like a sphere topologically, but not differen-

tially. The first exotic versions of ordinary four-dimensional 

space ℝ4 were discovered by Michael Freedman in 1982 and 

Simon Donaldson in 1983 [3]. Their work was extended by 

Robert Gompf in 1985 and Clifford Taubes in 1987, who 

showed that there are, in fact, an uncountable infinity of 

exotic versions of four-dimensional Euclidean space [4]. The 

points making up these manifolds can be globally topolo-

gically identified with sets of four numbers (t,x,y,z) in the 

usual way, and these coordinates may vary smoothly over 

some neighborhood ― but they cannot be globally continued 

as smooth functions. Most remarkably of all, these exotic 

versions of ordinary space exist only in the case of four 

dimensions.

These results may have earthshaking physical signifi-

cance, yet they have hardly been noticed by physicists so far. 

Is it a coincidence that real spacetime is four-dimensional? A 

basic requirement for any practical field theory is that the 

underlying space be differentiable (“smooth”). But need it be 

Euclidean? Einstein’s theory of general relativity teaches us 

that what we feel as the “force of gravity” is actually just a 

manifestation of curved spacetime. It also seems to require 

vast amounts of dark matter and energy to curve that space-

time. Could it be, instead, that spacetime is simply exotic? 

This idea is known as the “Brans conjecture” [5].

The challenge is to extract, from the uncountable infin-

ity of possible exotic ℝ4s, a space whose properties can be 

described by an actual spacetime metric.

In three-dimensional Euclidean space, mathematicians 

have been able to break down complicated manifolds into 

simpler, Euclidean pieces (called “handles”) using something 

called “handlebody decomposition.” Physicist Christopher 

Duston has used an analogous mechanism (based on work by 

Taubes [4]) to obtain metrics on an exotic four-manifold [7]. 

When this four manifold is decomposed into blocks using 

“Casson handling,” we can give each block its own metric. 

Given a metric 𝑔(𝑛) on each block 𝑊𝑛, the metric on the 

whole manifold can be determined using Fourier-Laplace 

(“Z-transform”) techniques, 𝑔𝑧 = σ−∞
∞ 𝑧−𝑛𝑔(𝑛), and takes 

the form of what is known as an “end-periodic manifold” 

(Fig. 3). This mechanism gives us a way to describe curved 

space (and therefore gravity) in the alternate mathematical 

reality of exotic smooth topology.

Duston has applied his method to two different models, 

one astrophysical (an “exotic black hole”) and the other cos-

mological in nature (“Exotic Friedmann-Robertson-Walker” 

or FRW). In the former case, one obtains a version a version 

of the Kruskal metric of general relativity:

𝑑𝑠2 = 2𝑀3 −1 1−𝑛

1−𝑛 ! 2𝑀 1−𝑛 𝑑𝑢2 − 𝑑𝑣2 + 𝑟2𝑑Ω2 .         (1)

The cosmological model yields an exotic version of the 

standard flat FRW metric:

𝑑𝑠2 = −𝑑𝑡2 + 1

2
𝑎2 𝑡 2𝑘 − 1 𝑑𝑟2 + 𝑟2𝑎2 𝑡 𝑑Ω2 . (2)

Here 𝑎(𝑡) is the usual cosmological scale factor, but the para-

meter 𝑘 is not the curvature parameter (this model is flat). By 

assuming a simple dust-like perfect fluid form for the energy-

momentum tensor, Duston is able to obtain an analytic form 

for the scale factor,

𝑎2 =
1

8𝜋𝐺𝜌
1 −

1

2𝑘 − 1
. (3)

Using this, he has derived a formula for gravitational light 

deflection in this manifold:

𝜃 = න
𝑑𝑟

𝑟2 𝐵2 −
𝐴
𝑟2

, 4

where A and B are presumably free parameters of the theory. 

Eq. (4) reduces to the standard light-deflection formula of 

general relativity for distances r much greater than the 

Schwarzschild radius. Nevertheless, this result what may be 

the first empirically testable prediction of a topologically 

exotic alternative to Euclidean space.

Fig. 4: G. Kuri in Towson University’s planetarium, suggesting a con-

nection between spacetime topology and cosmic background radiation.

Fig. 3: An end-periodic exotic four-manifold decomposed using Casson 

handles, as pioneered by Taubes [4] and applied by Duston [7].


