Chemical and Orbital Clues Behind the History of Globular Clusters

Turner Woody
Johns Hopkins University

(ESO/INAF-VST/OmegaCAM)

(Arp-Madore 1/HST)
What are Globular Clusters?

“Globular Clusters are roughly spherical, densely packed groups of stars found around galaxies. They probably formed at the same time as their host galaxies, therefore they provide a unique fossil record of the conditions during the formation and early evolution of galaxies.” (Ashman & Zepf, 1998)
What Can Globular Clusters Teach Us?

• Provide a fossil record of a galaxy’s dynamical and chemical conditions during formation

• Constrain estimates on the minimum age of the universe

• Provide examples to compare different stellar populations

• Can be used to test models of galaxy formation and evolution

(Ashman & Zepf, 1998)
How GC’s fit into Galaxy Formation

Monolithic Collapse

Accretion

(P. McCarthy, OCIW)
The Model

- Metallicity: More Negative = Low Metallicity, More Positive = High Metallicity
- Age: Higher Index = Older, Lower Index = Younger
- Energy: More negative = Lower energy, tightly bound, More positive = Higher energy, loosely bound
- Model predicts: Low metallicity, Younger = Higher energy, High metallicity, Older = Lower energy
- No High metallicity, Old clusters in data
- Appears to be two metallicity populations: Metal Poor and Metal Rich
Metallicity Histogram

3D Scatter with both Models

Data Points:
- Metal Poor
- Metal Rich

Plane Models:
- Full Model
- Metal Poor Model

Metal Poor Only Model

| | coef | std err | t | P>|t| | [0.025] | [0.975] |
|------------|---------|---------|-----|------|---------|---------|
| Intercept | 1.218e+05 | 5.34e+04 | 2.283 | 0.029 | 1.34e+04 | 2.3e+05 |
| Metal LW | -3.89e+04 | 1.39e+04 | -2.735 | 0.010 | -6.64e+04 | -9.785e+00 |
| Age Mid | -2.313e+05 | 5.61e+04 | -4.122 | 0.000 | -3.45e+05 | -1.17e+05 |
Metal Rich Orbits

- Metal Rich: Flatter, More Regular, Close to Core

Metal Poor Orbits

- Metal Poor: Randomly Oriented, Less Regular, Further from Core

Data Points: Metal Rich, Metal Poor
Conclusions

• Strong correlation between a GC’s Age, Metallicity, and Energy:
 Young, Low metallicity = Higher energy; Older, High Metallicity = Lower energy

• There appear to be two subgroups of GC’s: Metal Rich and Metal Poor

• Metal Rich are Young with Low energy and Flat, Tight orbits

• Metal Poor tend to a gradient described in both models: Younger have Higher energy, Older have Lower energy