Much Dark, Very Dust

Jessica Gillcrist Maegan Jennings

Olbers' Paradox

- History
 - See Kayleigh's poster
- Accepted Resolution
 - Age of the Universe
 - Expansion
- Not Accepted Resolution
 - Absorption (Olbers, de Chéseaux)
 - Cannot eliminate background light
 - --- but can shift it out of optical!

Hubble Ultra Deep Field (2014)

Extragalactic Background Light (EBL)

• In general relativity, given as a function of wavelength λ_0 by:

Plotting.. World Domination Graphs

Test case: delta-function spectrum

- As a test case, model galaxy spectrum with a Dirac delta function $F(\lambda) = \frac{L}{\lambda_p} \delta\left(\frac{\lambda}{\lambda_p} 1\right)$ where $\lambda = \frac{\lambda_0}{1+z}$
- Normalize via $\int_0^\infty F(\lambda) d\lambda \equiv L$, take λ_p =7000 Å
- And take n(z) = constant for simplicity
- Result:

Blackbody spectra

- Now try blackbody spectrum $F(\lambda) = 15 \left(\frac{hc}{\pi k}\right)^4 \frac{C/\lambda^5}{e^{hc/kT\lambda}-1}$
- Normalization $\int_0^\infty F(\lambda)d\lambda = CT^4 \equiv L$ so $C = L/T^4$
- For multiple blackbodies, $L = f_1 T_1^4 + f_2 T_2^4 + \dots$
- Results!

Galaxy Evolution

- Universe was much brighter at higher redshifts!
- Model with an evolving galaxy luminosity density $L*n(z) \to \mathcal{L}(z)$
- Four different models (Fossil, TVD, H&S, SA)

(Nagamine et al. 2006)

EBL with Galaxy Evolution

 Results – an almost perfect fit with 4 blackbodies!

- Possible physical interpretation of peaks
- Significant IGM absorption is clearly not needed

Quasar Reddening

• Dust in the IGM reddens the spectra of quasars beyond $z\sim2$:

 But there cannot be too much dust or we would not see quasars at all! (Quasar PG1634+706 at z=1.337, m=14.5, observed using the MDSGC telescope on July 18, 2018)

(That's a look-back time of 9 billion years!!!)

Opacity of the dusty IGM

• Given by $\tau(\lambda_o, z) = \int_0^z \xi\left(\frac{\lambda_o}{1+z'}\right) \tau_*(z') \frac{(1+z')^2}{H(z')/H_0} dz'$

 Resulting opacity is a good match to observational data at 3000 Å:

Preliminary Results!

 Spectral EBL intensity including IGM opacity for all four galaxy evolution models:

- Each model takes 10-20 minutes to run
- IGM opacity reduces intensity of first peak by about 3%
- Olbers was not so wrong after all!

