

Experiential Learning in Automation and Robotics

Juliette Abbonizio, Senior Aerospace Engineering Major at UMD Charné Folks, Junior Electrical and Computer Engineering Major at MSU

Advisor: Dr. Abhijit Nagchaudhuri, Engineering Professor at UMES Co-Advisor: Dr. Madhumi Mitra, Environmental Sciences Professor at UMES

Outline

- Robotics
 - iRobot Create 2
 - Adept Cobra s350
- CAD/3D Printing
 - Three finger Gripper
 - Two finger Gripper
- Outreach
 - Summer BRIDGE Program

Robotics at UMES

Objectives

- Research
 - Content knowledge in Robotics/Applications/Programming skills
- Effective Communication
 - Oral presentation
 - Abstract writing
 - Conference Proceeding American Society of Engineering Education (ASEE) Annual Meeting 2019 (Future)
- Outreach
 - Summer BRIDGE Program (supported by MDSGC)
 - CAD/3D Printing
 - Robotics

Robotics Automation Manufacturing (RAM) Lab

Robotics

- iRobot Create 2
 - Mobile Platform
 - Programmable Roomba
 - Wrote movement code for the robot using BreezyCreate2 Library¹ in Python
 - Collected data using a light sensor and a temperature and humidity sensor
 - Currently working on wall sensor code to avoid obstacles using the Pycreate2 Library²

iRobot Create 2

¹Levy, Simon, *BreezyCreate2*, (2017), GitHub repository, https://github.com/simondlevy/BreezyCreate2 ² Walchko, *pycreate2*, (2017), GitHub repository, https://github.com/MomsFriendlyRobotCompany/pycreate2

Robotics

Raspberry Pi with GrovePi Board and Sensors

iRobot Create 2 Collecting and Transmitting Data

Robotics

- Adept Cobra S350
 - 4-axis robot
 - High-performance Selective Compliance Articulated Robotic Arm (SCARA)
 - 3D printed gripper
 - Skills learned:
 - Relative transform
 - V+ Language

Adept Cobra S350

CAD/3D Printing

- Underactuated Robotic Gripper
- Followed the framework of An Open-Source 3D Printed Underactuated Robotic Gripper ³
- Interfaced the gripper on the Adept Cobra
- All parts were 3D printed at UMES

Afina Desktop 3D Printer

3D Printed Gripper

³ Tlegenov, Yedige, et al. An Open-Source 3D Printed Underactuated Robotic Gripper. Astana: Print. 010000

Robotic Gripper

Arbotix MX-28 Motor

Two-Finger Gripper

Exploded Presentation of Slider Crank Gripper

Robotic Gripper

- ArbotiX-M controller
- MX-28T servo •
 - Programmed the servo
 - Followed the sample code ٠ provided by the Arbotix-M libraries⁴

MatlabControl		
	positionSet.m 🗙 🕂	
<pre>int high = -1;</pre>	<pre>1 _ function [position] = positionSet(serial, goalPos)</pre>	
<pre>int low = -1;</pre>	2 SUNTITLED Summary of this function goes here	
void setup()	3 % This function takes in serial connection (serial) and	
{	4 % goal position (goalPos) between the range of 0 to 1023	
<pre>serial.begin(9600); }</pre>	5 -% It returns the posiion that the servo has returned to	
	6	
void loop()	7 - low = mod(goalPos,256)	
if(serial.available()>1)	8 - high 🗮 floor(goal/Pos)	
{	9	
low=serial. <u>read();</u> high=serial. <mark>read</mark> ();	<pre>10 - fwrite(serial, low);</pre>	
	<pre>11 - fwrite (serial, high);</pre>	
<pre>SetPosition(1, low+high*256); delay(3000);</pre>	12	
	<pre>13 - position = fread(serial, 1) + fread(serial, 1)*256;</pre>	
<pre>serial.write(ax12GetRegister(1,30,1));</pre>	14 - end	
serial.write(ax12GetRegister(1.31.1)):		

⁴ "ArbotiX-M: The Arduino Compatible Board for Robots with Dynamixel Servos." Arbotix-M Board for Compatible Robots with Dynamixel Servos, Nootrix, nootrix.com/diy-tutos/arbotix-arduino/. Accessed 20 July 2018.

Arduino sketch coupled with the Matlab function required to drive the gripper

Outreach - BRIDGE

Exposed the incoming freshmen to robotics, CAD, 3D printing, and aviation sciences to prepare them for college level STEM courses

Outreach - BRIDGE

Scratch program compiled by students

Internship Outcomes

Academic Skills

- Increased knowledge of robotics
- Further development of software skills
 - SolidWorks
 - V+
 - Python
 - Arduino
- Honing of oral presentation and writing skills

Life Skills/Civic Responsibility

- Adapting to a new campus environment
- Fostering interdisciplinary collaboration and team building skills
- Enhancement of pedagogical skills through mentor/mentee experiences
- Exposure to small Unmanned Aerial Systems (sUAS) and Autonomous Surface Boats (ABS)s
- Awareness of sustainability and environmental stewardship

Acknowledgments

- Maryland Space Grant Consortium
 - Dr. Matt Collinge
 - Dr. Richard Henry
- Ibrahim Mamoun, University of Maryland Eastern Shore
- Habilou Ouro-Koura, University of Maryland Eastern Shore
- Brandon Gardner, University of Maryland Eastern Shore
- Nathan Bane, University of Maryland Eastern Shore
- Virginia Heath, University of Maryland Eastern Shore
- Dr. Mary Bowden, University of Maryland College Park
- Dr. Guangming Chen, Morgan State University

